планетные системы
планетные системы
новости планетной астрономии
статьи
статистика
поиск
глоссарий
галерея
обновления
о сайте
ссылки

18 июля 2019
Открыта пятая планета в системе Kepler-82
прямая ссылка на эту новость

В компактных плотно упакованных планетных системах, где планеты связаны друг с другом орбитальными резонансами низких порядков (это значит, что их орбитальные периоды относятся друг к другу как простые числа, например, 2:1 или 3:2) взаимное гравитационное влияние планет приводит к заметным вариациям времени наступления транзитов. Анализ этих вариаций (т.н. тайминг транзитов, или TTV-метод) позволяет определять массы транзитных планет без измерения лучевых скоростей родительской звезды, а также обнаруживать дополнительные (не транзитные) планеты.

На протяжении 4 лет основной миссии «Кеплер» наблюдал одну и ту же область неба в районе созвездий Лебедя и Лиры. Однако в мае 2013 года после выхода из строя второго маховика системы ориентации эти наблюдения стали невозможны. Для продолжения наблюдений транзитов планет на Поле Кеплера и измерения их масс TTV-методом была организована наблюдательная сеть KOINet, объединившая 9 телескопов с апертурами от 0.8 до 3.5 м. Наблюдения с помощью телескопов большой апертуры позволяют даже сквозь неспокойную земную атмосферу фиксировать транзиты планет размерного класса нептунов.

16 июля 2019 года в Архиве электронных препринтов была опубликована статья, посвященная открытию пятой (не транзитной) планеты в системе Kepler-82. Планета была обнаружена методом тайминга транзитов двух внешних планет, b и c.

Четырехпланетная система Kepler-82 (KOI-880) была представлена в 2012 году. Она включает в себя внутреннюю пару планет d и e с радиусами ~1.42 и ~2.34 радиусов Земли и орбитальными периодами 2.38 и 5.90 суток, и внешнюю пару b и c с радиусами 4.07 +0.24/-0.10 и 5.34 +0.32/-0.13 радиусов Земли и орбитальными периодами 26.44 и 51.54 суток, что близко к резонансу 2:1. Внешняя пара планет демонстрирует явные вариации времени наступления транзитов синусоидальной формы, которые, тем не менее, не находятся в противофазе, как бывает в большинстве подобных случаев. Попытки оценить массы обеих планет предпринимались неоднократно, но приводили к противоречивым и малоправдоподобным результатам (в частности, средняя плотность одной планеты оказывалась в ~14 раз больше плотности другой).

Чтобы разобраться в этой непростой ситуации, авторы статьи с помощью сети KOINet провели наблюдения нескольких транзитов планет b и c в период 2014-2018 гг. Как оказалось, реальное время наступления транзитов заметно отклонялось от предсказаний двухпланетной модели вплоть до того, что в трех случаях транзитов не наблюдалось вовсе. Исследователи построили динамическую модель системы Kepler-82 в поисках решения, которое воспроизвело бы все наблюдаемые транзитные события, но обнаружили, что для этого необходимо ввести пятую планету, находящуюся с внешней планетой c в резонансе 2:3. (Строго говоря, таких решений было два – с цепочкой резонансов 3:2:1 и 6:2:1, но второе решение хуже описывает данные и плохо согласуется со свойствами родительской звезды, так что авторы в результате его отбросили.)

Пятая планета Kepler-82 f является самой внешней в этой системе. Ее масса, вычисленная по влиянию на планету c, оценивается в 20.9 ± 1 масс Земли, радиус неизвестен. Орбитальный период внешней планеты достигает 75.732 ± 0.012 земных суток, температурный режим является промежуточным между температурными режимами Меркурия и Венеры. Эксцентриситеты всех трех внешних планет очень малы – 0.003 ± 0.002, 0.007 ± 0.002 и 0.0014 +0.0018/-0.0010 для b, c и f, соответственно.

Учет влияния пятой планеты устранил неправдоподобную разницу в средних плотностях планет b и c. Теперь масса b оценивается в 12.15 +0.96/-0.87 масс Земли, что приводит к средней плотности 0.98 +0.11/-0.16 г/куб.см, а масса планеты c – в 13.9 ± 1.3 масс Земли (средняя плотность 0.494 +0.070/-0.083 г/куб.см).


Планеты Kepler-82 b (показана красным) и Kepler-82 c (показана синим) на плоскости «масса – радиус» среди других транзитных экзопланет малых масс. Желтым цветом показаны планеты, чьи массы были измерены RV-методом, зеленым цветом – TTV-методом. Для сравнения также приведены Уран и Нептун.

Авторы проанализировали динамическую устойчивость системы Kepler-82 (не учитывая внутренние планеты). Как оказалось, в отсутствии планеты f движение планет b и c является хаотическим, введение f делает систему устойчивой на протяжении 10 млрд. лет.

Информация получена: https://arxiv.org/pdf/1907.06534.pdf

 

 

12 июля 2019
Определена распространенность планет у М-звезд в окрестностях Солнца
прямая ссылка на эту новость

Красные карлики – самые многочисленные звезды Галактики, их доля достигает 70%. Планетные системы звезд красных карликов отличаются от планетных систем солнцеподобных звезд – как правило, они включают в себя небольшие планеты (мини-нептуны, суперземли и планеты земного типа). Планеты-гиганты у М-звезд встречаются редко.

12 июня 2019 года в Архиве электронных препринтов была опубликована статья, посвященная анализу распространенности планет различных типов у близких красных карликов. Исследователи рассмотрели М-звезды, лучевые скорости которых регулярно измерялись спектрографами HARPS (327 звезд), HIRES (159 звезд), PFS (67 звезд) и UVES (102 звезды). Общее количество изученных звезд с массами от 0.1 до 0.65 солнечных масс достигло 426 штук (некоторые из них наблюдались сразу несколькими спектрографами). Кроме этого, авторы воспользовались опубликованными данными, полученными рядом других спектрографов и наблюдательных программ (AAT, APF, CORALIE и пр.) и тоже учли их в своем анализе.

Помимо поиска в данных когерентных колебаний, предположительно наведенных планетами, авторы отслеживали различные маркеры звездной активности. Если колебания лучевой скорости звезды сопровождались изменением ее блеска и/или коррелировали с признаками внутренней активности, они считались ложнопозитивами (т.е. имеющими не планетную природу). Все фильтры прошло 118 планетных RV-кандидатов, большинство из которых уже было открыто ранее.

Кандидаты были классифицированы по типам в соответствии с их минимальными (проективными) массами m sin i. К землям (планетам земного типа) отнесли планеты с минимальными массами менее 2 земных, к суперземлям – планеты с минимальными массами от 2 до 10 земных, к мини-нептунам – с минимальными массами от 10 масс Земли до массы Нептуна (~17 масс Земли), к нептунам – в интервале от массы Нептуна до массы Сатурна (17-95 масс Земли), и наконец к гигантам – в интервале от массы Сатурна до 13 масс Юпитера. Понятно, что это деление достаточно условное, потому что для каждой конкретной планеты остается неизвестным вклад множителя sin i, и планета с минимальной массой, попадающей в диапазон суперземель, вполне может оказаться нептуном и даже планетой-гигантом. Однако в среднем ошибка будет не существенной.

Кроме классификации по массам авторы ввели классификацию по тепловому режиму. Планеты, находящиеся в пределах обитаемых зон своих звезд, были названы «теплыми», находящиеся ближе внутреннего края обитаемой зоны – «горячими», находящиеся далее внешнего края – «холодными».

Ниже представлено распределение 118 планетных кандидатов по минимальным массам (слева) и орбитальным периодам (справа).


Распределение планетных кандидатов по минимальным массам (слева) и орбитальным периодам (справа). Черным цветом показано распределение планет более массивных красных карликов с массами от 0.43 до 0.65 солнечных масс, красным цветом – распределение планет менее массивных красных карликов с массами от 0.1 до 0.43 солнечных масс, белым цветом – их совокупное распределение.

В целом распространенность планет у красных карликов оказалась равной 2.39 +4.58/-1.36 на одну звезду (с достоверностью 99%). Авторы особо подчеркнули, что не экстраполировали результаты за пределы текущего порога обнаружимости RV-планет, в логарифмической шкале на плоскости «минимальная масса – орбитальный период» лежащего примерно между точками с координатами (1 масса Земли, 10 суток) и (50 масс Земли, 104 суток). Иначе говоря, речь идет только о планетах массивнее Земли и с орбитальными периодами короче 27 земных лет. Общее количество планет должно быть больше, так что оценку ~2.4 планеты на один красный карлик можно считать нижним пределом.


Обнаруженные планетные кандидаты (показаны красным цветом) на плоскости «орбитальный период – минимальная масса». Оттенками серого цвета показана вероятность обнаружения планеты с данными минимальной массой и орбитальным периодом. Резкое уменьшение количества планет с орбитальными периодами 3-5 тысяч суток (8-14 лет) объясняется ограниченным временем наблюдений, препятствующим обнаружению долгопериодических планет.

Из 118 планетных кандидатов нет ни одного с минимальной массой выше 32 масс Земли и орбитальным периодом короче 10 суток, что накладывает верхний предел на распространенность таких планет в 0.27% на одну M-звезду. С уменьшением массы и увеличением орбитального периода количество планет быстро возрастает.


Распространенность планет в диапазоне минимальных масс от 1 до 1000 масс Земли и орбитальных периодов от 1 до 10 000 земных суток. Число в левом нижнем углу каждой клетки – вероятность обнаружения планеты с данными минимальной массой и орбитальным периодом. Оттенками серого цвета показана распространенность планет в данной области параметров, приходящаяся на 1 звезду.

Ниже показано распределение планет по массам в линейной (слева) и логарифмической (справа) вертикальной шкале. Различными цветами показана суммарная распространенность планет каждого интервала масс с орбитальными периодами короче 3.2, 10, 32, 100, 320 и 1000 земных суток.

Распространенность земель и суперземель в обитаемой зоне оценили в 0.48 +0.46/-0.16 (другими словами, примерно каждый второй красный карлик имеет в обитаемой зоне планету с массой от 1 до 10 масс Земли).

Чтобы хотя бы примерно оценить количество планет меньших масс, авторы обратились к данным, полученным «Кеплером». Однако тут есть свои тонкости. «Кеплер» искал планеты транзитным методом, который определяет радиусы планет, но не их массы. У планет нет своей «диаграммы Герцшпрунга-Рассела», которая однозначно связывала бы радиусы планет и их массы, массы планет одного радиуса могут различаться на порядок и даже больше. Поэтому авторы просто воспользовались оценкой распространенности планет с радиусами от 0.5 до 1 радиуса Земли и орбитальными периодами от 0.5 до 200 суток, данной Дрессинг и Шарбонно в 2015 году: 0.60 +0.9/-0.7 на одну M-звезду. Поскольку планеты этого типа в настоящее время явно лежат под порогом обнаружения RV-методом, авторы прибавили эту величину к своим оценкам и получили, что каждый красный карлик в среднем имеет 3 планеты. Последняя оценка не учитывает маленькие планеты с орбитальным периодом больше 200 суток, так что распространенность 3 планеты на звезду можно считать нижним пределом.

Информация получена: https://arxiv.org/pdf/1906.04644.pdf

 

 

6 июля 2019
KMT-2018-BLG-0029L b: планета массой 6.4 масс Земли с температурным режимом Цереры
прямая ссылка на эту новость

Метод гравитационного микролинзирования позволяет обнаруживать холодные маломассивные планеты, недоступные всем остальным методам. Однако по форме кривой блеска точно определяется лишь отношение масс компонент линзы q, а не сами массы, и для большинства микролинзовых планет известно только оно. Изучение зависимости количества микролинзовых планет от величины q показало, что существует резкий дефицит планет с малыми q, а планеты с q < 0.5·10-4 вообще отсутствуют. Пока неясно, является ли этот дефицит следствием наблюдательной селекции, или он отражает реальный недостаток маломассивных планет за снеговой линией своих звезд. (От себя замечу, что в случае Солнца q = 0.5·10-4 имела бы планета с массой ~16 масс Земли, так что наличие в Солнечной системе Урана и Нептуна говорит скорее в пользу наблюдательной селекции.)

28 июня 2019 года в Архиве электронных препринтов была опубликована статья, посвященная открытию планеты с экстремально низким значением q = (1.81 ± 0.20)·10-5. Планета была открыта корейским микролинзовым обзором KMTNet.

Событие микролинзирования KMT-2018-BLG-0029 было обнаружено 30 мая 2018 года во время тестирования нового алгоритма оповещения. 24 июня на кривой блеска фоновой звезды прорисовался дополнительный короткий пик в 0.4 звездной величины, свидетельствующий о двойственности линзы с малым значением q, т.е. о системе звезда+планета. 1-4 июля событие KMT-2018-BLG-0029 наблюдал космический ИК-телескоп «Спитцер», находившийся в тот момент на проективном расстоянии ~1.3 а.е. от Земли (другими словами, проекция отрезка Земля-«Спитцер» на плоскость, перпендикулярную направлению на событие, составила 1.3 а.е.). Дополнительные наблюдения, проведенные «Спитцером», позволили измерить микролинзовый параллакс и тем самым независимо оценить массу звезды-линзы и ее планеты.

Масса звезды KMT-2018-BLG-0029L оказалась равной 1.06 ± 0.20 солнечных масс. Находясь на главной последовательности, такая звезда имела бы ранний G или поздний F спектральный класс. Наблюдаемое загрязнение кривой блеска фоновой звезды, соответствующее источнику с абсолютной величиной +4.54 ± 0.22, полностью соответствует ожидаемому блеску звезды-линзы. Однако авторы исследования осторожно отмечают, что это очень хороший кандидат, но пока не достоверная регистрация звезды-линзы. Расстояние до системы составляет 2.73 ± 0.26 кпк.

Масса планеты KMT-2018-BLG-0029L b оценивается в 6.41 +0.89/-0.75 масс Земли, в момент наблюдения их разделяло проективное расстояние 3.94 ± 0.35 а.е. Температурный режим планеты соответствует температурному режиму главного пояса астероидов. Ничего похожего в Солнечной системе нет. Возможно, перед нами мини-нептун, окруженный первичной водородно-гелиевой атмосферой, а возможно – супер-Ганимед, наполовину состоящий из каменных пород и наполовину изо льда.

Авторы отмечают, что открытие микролинзовой планеты с таким малым отношением масс q стало возможным благодаря высокой частоте фотометрических замеров обзора KMTNet (раз в час) и наличию трех телескопов с апертурой 1.6 метров, разнесенных по долготе примерно на 120°. Еще более выгодной стратегией являются круглосуточные наблюдения, проводимые из космоса. Авторы приходят к выводу, что наземные наблюдения с низкой частотой нередко пропускают короткие события микролинзирования, вызванные маломассивными планетами, что и приводит к их кажущемуся дефициту.

Информация получена: https://arxiv.org/pdf/1906.11183.pdf

 

 

3 июля 2019
Три солнца в небе: землеразмерная планета у близкого красного карлика LTT 1445A
прямая ссылка на эту новость

Методы трансмиссионной спектроскопии позволяют изучать состав и физические свойства атмосфер транзитных экзопланет. Однако, как правило, речь идет о транзитных планетах-гигантах, преимущественно горячих юпитерах, имеющих большие размеры и протяженные атмосферы с огромной шкалой высот (сотни километров против 8 км у Земли). Планеты земного типа – несравненно более трудная цель из-за своих маленьких размеров и компактных атмосфер, состоящих из тяжелых газов. Анализ возможностей строящихся наземных телескопов 30-метрового класса и 6-метрового космического телескопа им. Джеймса Вебба, чей запуск ожидается в 2021 году, показал, что этим инструментам будут доступны для изучения лишь атмосферы планет земного типа, вращающихся вокруг красных карликов с радиусом менее 0.3 солнечных и удаленных от нас не далее чем на 15 пк.

По последним данным внутри сферы с радиусом 15 пк находится 411 красных карликов с массами в интервале от 0.1 до 0.3 солнечных масс и, возможно, около 60 ультрахолодных карликов с массами менее 0.1 солнечных, но выше предела Кумара (т.е. все же являющихся звездами, а не коричневыми карликами). У некоторых из этих звезд уже обнаружены транзитные планеты – это GJ 1132 b, c, LHS 1140 b, c, LHS 3844 b и планеты системы TRAPPIST-1. Однако ближайшая из этих систем находится на расстоянии ~12 пк, а хочется найти что-нибудь поближе. И это было сделано – 26 июня 2019 года в Архиве электронных препринтов была опубликована статья, посвященная открытию небольшой транзитной планеты у красного карлика LTT 1445A.

LTT 1445 (GJ 3192, TOI-455) – иерархическая звездная система, удаленная от нас на 6.871 ± 0.004 пк и состоящая из трех маломассивных красных карликов. Главный компонент A, вокруг которого вращается планета, имеет массу 0.256 ± 0.014 солнечных масс, радиус 0.270 ± 0.012 солнечных радиусов и светимость 0.81 ± 0.18% от светимости Солнца. На расстоянии 7 угловых секунд (в 2019 году, видимое расстояние постоянно изменяется из-за орбитального движения) расположена пара компонентов B и C массами ~0.22 и ~0.16 солнечных масс, вращающаяся друг вокруг друга по эллиптической орбите с большой полуосью 1.16 ± 0.08 угловых секунд (~8 а.е.), эксцентриситетом 0.51 ± 0.10 и орбитальным периодом 36.2 ± 5.3 земных лет. Пара BC и компонент A, в свою очередь, делают один оборот вокруг барицентра системы примерно за 250 лет. Наклонение орбит близко к 90° (система наблюдается «с ребра»), так что все три компонента при взгляде с Земли лежат на одной прямой.

Звезду LTT 1445 наблюдал TESS на 4 секторе (с 19 октября по 15 ноября 2018 года). Было зафиксировано 4 транзитных события с периодом 5.359 земных суток и глубиной 2500 ± 170 ppm. Поскольку все три компонента попали на один пиксель матрицы TESS, размер которого достигает 21 угловой секунды, пришлось провести дополнительные наземные наблюдения с помощью 4-х телескопов обсерватории в Сьерра-Тололо (CTIO). На снимках, полученных 16 февраля 2019 года, во время начала очередного транзитного события, компонент A и пара BC были разрешены, тем самым удалось определить, что транзитная планета вращается вокруг компонента A.

Чтобы оценить массу планеты, исследователи получили 5 замеров лучевой скорости LTT 1445A с помощью спектрографа HARPS, также они использовали 9 архивных замеров, полученных ранее. Формально масса планеты оказалась равной 2.2 +1.7/-2.0 масс Земли, но поскольку погрешности сравнимы с измеряемой величиной, авторы осторожно говорят о верхнем пределе в 8.4 масс Земли (с достоверностью 99.73%). Радиус планеты составляет 1.35 ± 0.07 радиусов Земли, эффективная температура – 428 ± 22К. Этот горячий аналог Венеры вращается на среднем расстоянии 0.0381 ± 0.0007 а.е. по орбите с плохо определенным эксцентриситетом 0.16 +0.35/-0.12.

Поскольку орбиты пар B и C, A и BC, A и ее планеты все лежат примерно в одной плоскости, система выглядит невозмущенной и динамически холодной. Это увеличивает шансы обнаружить у звезды LTT 1445A дополнительные транзитные планеты с периодом, превышающим продолжительность одного сектора TESS (27.4 суток). Авторы собираются продолжить мониторинг лучевой скорости LTT 1445A с целью уточнения массы планеты b и обнаружения возможных дополнительных планет. По их расчетам, маловероятно, что удастся открыть землеразмерную планету, еще более удобную для изучения методами трансмиссионной спектроскопии (ближе расположенную и у такой же небольшой звезды).

Информация получена: https://arxiv.org/pdf/1906.10147.pdf

 

 

Архив новостей:

2005 2006 2007 2008 2009 2010 2011 2012_1 2012_2 2013_1 2013_2 2014_1 2014_2 2015_1 2015_2 2016_1 2016_2 2017_1 2017_2 2018_1 2018_2 2019_1